Mansoura University
Faculty of Engineering
Dept. of Electrical Engineering First Year

Final Exam (23/6/ 2011)
Electric Circuits-2
Full Mark (90)
Time: 3 Hours

Please Answer The Followings:

1- For the circuit shown in Fig.1, find
a- $\mathrm{Vc}\left(0^{-}\right), 1\left(0^{-}\right)$.
b- $\mathrm{Vc}(\mathrm{t}), \mathrm{I}(\mathrm{t})$.
c- Energy stored in a capacitor and power dissipated in 5Ω resistance at $t=2 \tau$.

Fig. (1)
2- The linear transformer in the circuit shown in Fig. 2 represents a two-port network. The voltage source Vs $=100 \mathrm{~V}$ (r.m.s).
(30 Mark)
a- Find the Z-parameters of the linear transformer.
b- Under loading conditions of linear transformer, find I_{1}, total circuit impedance and power delivered by the source.
c- Use the Z-parameters to derive the Thevenin's equivalent circuit with respect to R_{L} and find the maximum power absorbed by this resistance.

Fig. 2

3- The switch in the circuit shown in Fig. 3 has been open a long time before closing at $t=0$, find:
(25 Mark)
a- $i\left(0^{+}\right)$and $V_{0}\left(0^{+}\right)$.
$b-i(t)$ for $t \geq 0$.
c- Energy stored in inductor at steady-state.

Fig. 3
4- For the circuit shown in Fig.4, if $\mathrm{Is}(\mathrm{t})=10 \operatorname{Cos} \omega \mathrm{t}(\mathrm{A})$, find:
a- Resonance frequency of the circuit (ω_{0}).
b- The magnitude of $Y(\omega)$ at $\omega=0, \omega_{0}$, and ∞.
c- Circuit quality factor (Q) , bandwidth (B) and half power frequency points (ω_{1}, ω_{2}).
$d-$ Power delivered by the current source at resonance and at ω_{1}, ω_{2}.

Fig. 4

With My Best W ishes
Prof. Dr. Mohammed El-Saied

